Near-infrared Cavity Ring-down Spectroscopic Study of the Reaction of Methylperoxy Radical with Nitrogen Monoxide

Shinichi Enami,[†] Takashi Yamanaka, and Masahiro Kawasaki* Department of Molecular Engineering, Kyoto University, Kyoto 615-8510

(Received October 20, 2008; CL-081006; E-mail: kawasaki@moleng.kyoto-u.ac.jp)

Time-resolved near-infrared cavity ring-down spectroscopy was applied to the kinetics of the gas-phase reaction of CH_3O_2 with NO at 100 Torr total pressure and 298 K. After flash photolysis of the $CH_4/Cl_2/O_2/N_2$ mixture at 355 nm or the $CH_3I/O_2/N_2$ mixture at 266 nm, the CH_3O_2 absorption at 1.36 μ m was monitored for the kinetic study. The reaction rate constants determined in two different radical sources are essentially the same and in agreement with the recently proposed values.

Peroxy radicals (RO_2) are critical intermediates in atmospheric and combustion chemistry, which are formed during the low-temperature oxidation of organic compounds. Recently high concentrations of RO_2 up to 80 pptv in the marine boundary layer (MBL) have been reported. RO_2 in the atmosphere converts NO into RO_2 , results in the formation RO_3 , and then contributes RO_3 (OH and RO_2 radicals) cycles: RO_3

$$RO_2 + NO \rightarrow RO + NO_2$$
 (1)

$$NO_2 + h\nu \to NO + O(^3P) \tag{2}$$

$$O(^{3}P) + O_{2} + M \rightarrow O_{3} + M$$
 (3)

where M is a third body. Because of its significant roles, the reactions of RO2 have been widely studied.3 Typically a UV absorption centered at $\approx 240 \,\mathrm{nm}$ that comes from the $B^2A'' - X^2A''$ transition of RO₂ has been used for kinetic study.³ However, this absorption region is wide (half-width \approx 40 nm), broad, and unstructured. Hence, it is essentially difficult to monitor only RO₂ absorption without interferences of unwanted absorbed species. RO₂ uniquely has a structured $A^2A'-X^2A''$ transition at much longer wavelength, typically in the near-infrared (NIR) regions. Use of the NIR region absorption has great advantages for the kinetic study because 1) it avoids complications due to the spectral overlap in the presence of other species, and 2) there is no effect of UV flash photolysis scattering, which occurs undesirably during the generation of RO₂ radicals. However, it is usually difficult to generate tunable NIR light, and the absorption cross section σ at this region is small 10^{-20} – 10^{-22} cm² moleucle⁻¹. Cavity ring-down spectroscopy (CRDS)^{4,5} combined with an optical parametric oscillator laser is a powerful absorption spectroscopic method and has an extremely long effective optical path under atmospheric relevant conditions. Miller and co-workers are the first to monitor RO2 absorptions in the NIR region using a combination of CRDS and a dye-laserpumped Raman shifter.⁶ Here we report a novel application to a kinetic study of the gas-phase reaction of CH₃O₂ with NO using time-resolved NIR-CRDS with two different CH₃O₂ generation systems under atmospheric relevant conditions.

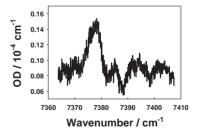
The CRDS apparatus used in the present study is essentially the same as previous studies. $^{7.8}$ The system employed a photolysis laser (Spectra Physics, GCR-250, 266 or 355 nm) and a probe laser (Spectra Physics, MOPO-SL, $1.36\,\mu m$, spectral reso-

lution 0.2 cm⁻¹). After the photolysis laser pulse beam traversed a glass tube reactor, the probe laser pulse beam was injected nearly collinear to the axis of the photolysis laser through one of two high-reflectivity mirrors. In the presence of an absorbing species, the light intensity within the cavity is given by eq 4.

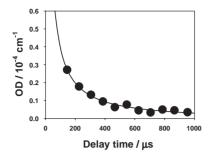
$$I(t) = I_0 \exp(-t/\tau) = I_0 \exp(-t/\tau_0 - \sigma nc L_R t/L_C)$$
 (4)

where I_0 and I(t) are the light intensities at time 0 and t, τ is the cavity ring-down time with photolysis beam, τ_0 is the cavity ring-down time without photolysis laser light (typically 5 μ s), L_R is the length of the reaction region (0.46 \pm 0.02 m), L_C is the cavity length (1.04 m), c is the velocity of light, and n and σ are the concentration and the absorption cross section of absorbing species, respectively. By varying the delay between the photolysis and probe laser pulses, the concentration of CH₃O₂ was monitored as a function of delay time. Further experimental information is available in Supporting Information (SI). 11

Figure 1 shows a typical cavity ring-down spectrum of CH_3O_2 in the $7365-7405\,cm^{-1}$ region measured 5 ms after 355 nm flash photolysis of a $CH_4/Cl_2/O_2/N_2$ mixture at 100 Torr, 298 K with 0.02 nm step. The spectral baseline was taken in this wavenumber range without photolysis conditions. The peak at $7376\,cm^{-1}$ is attributable to the 0–0 band head of the $A^2A'-X^2A''$ transition of CH_3O_2 . 6 Cl atom was generated by 355 nm photolysis of Cl_2 . Cl atom reacts with excess CH_4 ([CH_4] $_0 > 10^4$ [CI] $_0$) to form CH_3 radical, which rapidly reacts with O_2 to form CH_3O_2 within a few microseconds.


$$\text{Cl}_2 + h\nu(355 \,\text{nm}) \rightarrow 2\text{Cl}$$
 (5)

$$CH_4 + Cl \rightarrow CH_3 + HCl$$
 (6)


$$CH_3 + O_2 + M \rightarrow CH_3O_2 + M \tag{7}$$

The observed structured absorption spectrum of CH_3O_2 reasonably agrees with the previous reported one measured in the 193 nm photolysis of acetone in the presence of O_2 at 250 Torr of Ne/O_2 mixture.⁶

Figure 2 shows a typical decay time profile of CH₃O₂ in the presence of NO. The decays were analyzed by considering 1st-

Figure 1. Absorption spectrum of CH_3O_2 appearing after 355 nm flash photolysis of $CH_4/Cl_2/O_2/N_2$ mixture at 298 K with 100 Torr total pressure. OD stands for optical density.

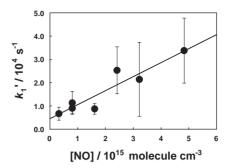
Figure 2. Typical decay time profile of CH_3O_2 absorption at 7375.7 cm⁻¹ (1355.8 nm) in the presence of 3.2×10^{15} molecule cm⁻³ NO at 298 K, in 100 Torr of N₂ diluent, where $[CH_4]_0 = 1.6 \times 10^{17}$, $[Cl_2]_0 = 6.6 \times 10^{15}$, $[O_2] = 4.8 \times 10^{17}$, and $[NO]_0 = 3.2 \times 10^{15}$ molecule cm⁻³. Fitting curve shows eq 9 fitting to the data. OD stands for optical density.

order (CH_3O_2 reaction with NO and the diffusion) and 2nd-order (CH_3O_2 self-reaction 8) losses.⁷

$$CH_3O_2 + CH_3O_2 \rightarrow 2CH_3O + O_2$$
 (8a)

$$\rightarrow$$
 other products (8b)

$$[CH3O2]t-1 = ([CH3O2]0-1 + 2k8/k1') exp(k1't) - 2k8/k1'$$


where $[\mathrm{CH_3O_2}]_0$ is the initial $\mathrm{CH_3O_2}$ concentration, $[\mathrm{CH_3O_2}]_r$ is the concentration of $\mathrm{CH_3O_2}$ at time $t,k_1{}'$ is the pseudo-first-order rate of loss of $\mathrm{CH_3O_2}$ with respect to the reaction with NO, and k_8 is the reported self-reaction rate constant of $\mathrm{CH_3O_2}$, $4.7 \times 10^{-13} \, \mathrm{cm^3}$ molecule $^{-1} \, \mathrm{s^{-1}}.^8$ The typical $[\mathrm{CH_3O_2}]_0$ is estimated to be $10^{12}-10^{13}$ molecule $\mathrm{cm^{-3}}.^{11}$ The concentration ratio was kept at $[\mathrm{NO}]_0/[\mathrm{CH_3O_2}]_0 > 50$. The secondary reactions are carefully checked. The obtained $k_1{}'$ values were plotted as a function of $[\mathrm{NO}]$ (Figure 3), yielding the $\mathrm{CH_3O_2} + \mathrm{NO}$ reaction rate constant of $(8.2 \pm 2.9) \times 10^{-12} \, \mathrm{cm^3}$ molecule $^{-1} \, \mathrm{s^{-1}}$ (the uncertainty is 2σ) at $298 \, \mathrm{K}$ and $100 \, \mathrm{Torr}$ total pressure, which is in excellent agreement with the previous JPL and IUPAC proposed values, $(7.7 \pm 1.2) \times 10^{-12} \, \mathrm{cm^3}$ molecule $^{-1} \, \mathrm{s^{-1}}.^{9.10}$

We also performed the kinetic study by using a different reaction system. A $CH_3I/O_2/N_2/NO$ mixture was photolyzed at 266 nm followed by CH_3 radical rapidly reacting with O_2 to form CH_3O_2 radical within a few microseconds.

$$CH_3I + h\nu(266 \text{ nm}) \rightarrow CH_3 + I \tag{10}$$

$$CH_3 + O_2 + M \rightarrow CH_3O_2 + M$$
 (7)

The 2nd-order plot analysis produces the $CH_3O_2 + NO$ reaction rate constant of $(7.0 \pm 1.9) \times 10^{-12} \, cm^3 \, molecule^{-1} \, s^{-1}$ at 298 K, 100 Total pressure, where typical concentrations are $[CH_3I]_0 = (1-10) \times 10^{15}, \quad [NO]_0 = (0.1-5.0) \times 10^{15}, \quad [O_2] = 1.6 \times 10^{17} \, molecule \, cm^{-3}, \quad respectively.$ This value is in fair agreement with the $CH_4/Cl_2/O_2/N_2$ system and, again, in good agreement with previously proposed values. 9,10 The average value of two different systems is $(7.6 \pm 2.4) \times 10^{-12} \, cm^3$ moleucle $^{-1} \, s^{-1}$. Although the error at higher [NO] becomes inevitably large owing to the low CH_3O_2 absorption, the present NIR-CRDS method has a great advantage that it can preclude the complications of absorption overlap hindrances. NIR-CRDS

Figure 3. Second-order plot of $CH_3O_2 + NO$ at 298 K in 100 Torr total pressure.

could be applied to many significant scientific fields under ambient conditions.

We thank Dr. S. Hashimoto for help with experimental setup. S. E. is grateful to the JSPS Research Fellowship for Young Scientists. This work is partly supported by a Grant-in-Aid from JSPS (#20245005).

References and Notes

(9)

- † Present address: W. M. Keck Laboratories, California Institute of Technology, CA 91125, USA.
- T. J. Wallington, P. Dagaut, M. J. Kurylo, *Chem. Rev.* 1992, 92, 667.
- 2 J. Burkert, M. D. Andres-Hernandez, D. Stobener, J. P. Burrows, M. Weissenmayer, A. Kraus, J. Geophys. Res. 2001, 106, 5457.
- J. Sehested, O. J. Nielsen, T. J. Wallington, *Chem. Phys. Lett.* 1993, 213, 457.
- 4 A. O'Keefe, D. A. G. Deacon, Rev. Sci. Instrum. 1988, 59, 2544.
- 5 M. D. Wheeler, S. M. Newton, A. J. Orr-Ewing, M. N. R. Ashfold, J. Chem. Soc., Faraday Trans. 1998, 94, 337.
- 6 M. B. Pushkarsky, S. J. Zalyubovsky, T. A. Miller, J. Chem. Phys. 2000, 112, 10695.
- 7 S. Enami, Y. Hoshino, Y. Ito, S. Hashimoto, M. Kawasaki, T. J. Wallington, J. Phys. Chem. A 2006, 110, 3546.
- 8 S. Enami, T. Yamanaka, S. Hashimoto, M. Kawasaki, S. Aloisio, H. Tachikawa, J. Chem. Phys. 2006, 125, 133116.
- 9 S. P. Sander, R. R. Friedl, D. M. Golden, M. J. Kurylo, G. K. Moortgat, P. H. Wine, A. R. Ravishankara, R. E. Kolb, M. J. Molina, B. J. Finlayson-Pitts, C. E. Huie, V. L. Orkin, Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation number 15, Jet Propulsion Laboratory, Pasadena, CA, 2006.
- 10 R. Atkinson, D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, Jr., R. G. Hynes, M. E. Jenkin, J. A. Kerr, M. J. Rossi, J. Troe, Summary of Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry, IUPAC, 2006.
- 11 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/index.html.